DEVELOPMENT OF ERROR MONITORING ERPs IN ADOLESCENTS
Patricia L. Davies¹, & Sidney J. Segalowitz², William Gavin³
¹Colorado State University, Fort Collins, CO, USA, ²Brock University, St Catharines, Ontario, Canada, ³University of Colorado, Boulder, CO, USA.

Introduction
In a target discrimination task, trials with incorrect responses elicit event-related potentials (ERPs) that include two components, an error-related negativity (ERN) and a later error-positivity (Pe). Substantial evidence points to the anterior cingulate cortex (ACC) as the source generator of the ERN and it is modeled to be dopaminergically driven. The ACC is involved in executive functions with major connections between the prefrontal cortex (PFC) and limbic system. Given the continued maturation of the ACC, PFC, and dopamine systems into young adulthood, our aim was to investigate the development of ERPs to correct and incorrect (error) responses.

Results
Behavioral Data
Reaction times (see Figure 1): RT correlated with age in correct trials (r = -.75, p < .0005) and incorrect trials (r = -.61, p < .0005). Repeated measures ANOVA showed incorrect responses were significantly faster than correct responses (F(1,89) = 152.8, p < .0005), a significant difference in age group (F(5,89) = 20.4, p < .0005) and an interaction between RT of response type and age groups (F(5,89) = 2.91, p = .03).

Electrophysiological Data
The adult ERN and Pe were similar to those in previous studies (See Figure 2). The ERN shows an increase in amplitude with age over the 7 to 18 years age span, R² = .46, F(1,89) = 20.9, p < .001. The Pe amplitude did not change with age, r = -.08, n.s. See Figure 3.

Conclusions
1) Older children sometimes show an ERN and most always a Pe.
2) Younger children hardly ever show a strong ERN but most always a Pe.
3) Children know that they are making errors but children have different ERPs to error responses. Further analyses are needed to determine possible differences in the nature of error monitoring reflected in the ERPs.
4) The data presented here support a continued physiological maturation of the ACC and its connections with the PFC through adolescence given that the ERN is generated in the ACC and develops into adolescence, not reaching adult levels until late teen years. This contrasts with the development of the Pe component, found to be very robust even in the young children.

References

Acknowledgements: This research is supported by NSERC (Canada) and NICHD (USA) to PDJ and NSERC (Canada) to SBG. Correspondence should be addressed to Patricia L. Davies, E-mail: pdavies@lamar.colostate.edu or Sidney J. Segalowitz, Email: sjsegalow@brocku.ca.